
A11yUI-DSL: A Conceptual Framework for ​
Generative Accessible User Interfaces

Abstract

Recent advances in generative user interface (GenUI) tools demonstrate the potential of artificial
intelligence to rapidly produce high-fidelity UI prototypes from natural language prompts. While
these systems accelerate design workflows, they fall short on accessibility: most outputs achieve
only baseline compliance with standards such as WCAG, often resulting in homogenized,
uninspired interfaces that fail to address diverse user needs (Guriţă & Vatavu, 2025). Meanwhile,
research on adaptive UIs and model-driven engineering has shown that accessibility can be
systematically supported through formal models and transformation rules (Zouhaier,
BenDalyHlaoui, & Ben Ayed, 2023; Peissner, Häbe, Janssen, & Sellner, 2012). However, these
approaches lack integration with contemporary generative workflows.​
​
This paper introduces A11yUI-DSL, a conceptual framework for a Domain-Specific Language
(DSL) for Generative Accessible User Interfaces. A11yUI-DSL makes accessibility heuristics
first-class constructs, enabling designers to declare accessibility intent (e.g., keyboard
navigation, contrast ratios, multimodal inputs) in a structured, declarative syntax. These
specifications can be mapped to generative AI prompts, instantiated in accessible design systems,
and validated against heuristic-based constraints. We illustrate the framework with example DSL
snippets for common design scenarios (e.g., login screens, dashboards, conversational UIs),
demonstrating how declarative constraints can balance accessibility enforcement with creative
design diversity.

The contribution of this work is twofold: (1) a conceptual language model that embeds
accessibility heuristics directly into generative design pipelines, and (2) a research agenda
outlining design space tensions, open challenges, and evaluation strategies. By positioning
accessibility as a generative constraint rather than a post hoc check, A11yUI-DSL reframes the
role of DSLs in future human–AI collaboration for inclusive design.

Introduction

Advances in generative artificial intelligence (AI) have begun to transform the design of digital
interfaces. A new class of generative user interface (GenUI) systems. These range from
text-to-UI diffusion models to large language model–based prompt interpreters that can rapidly
produce high-fidelity prototypes from natural language descriptions (Bleichner & Hermansson,
2023; Chen, Knearem, & Li, 2025). These systems promise to accelerate workflows for

designers, reduce prototyping costs, and enable non-experts to generate usable interface drafts.
However, despite their creative potential, such tools have revealed critical gaps in accessibility
and inclusivity.

Accessibility is a foundational principle of human–computer interaction (HCI). It is enshrined in
legal frameworks such as Section 508 of the Rehabilitation Act in the United States and the
European Union’s Web Accessibility Directive, and operationalized through international
standards such as the Web Content Accessibility Guidelines (WCAG) and ISO 9241-171
(Miñón, Moreno, Martínez, & Abascal, 2014). Yet most generative design tools address
accessibility only superficially. Recent evaluations show that AI-generated UIs often achieve
baseline compliance (e.g., appropriate color contrast ratios) but produce homogenous layouts that
fail to meet the diverse needs of disabled users (Guriţă & Vatavu, 2025). Practitioners describe
this phenomenon as “accessibility handcuffs”. These are designs that are formally compliant but
aesthetically limited and creatively restrictive (Guriţă & Vatavu, 2025; Regan, 2004).

The consequences of this gap are significant. Designers remain skeptical of generative AI
because of its poor support for nuanced accessibility requirements, including cognitive load,
multimodal alternatives, and adaptive personalization (Chen et al., 2025). Moreover, because
generative models are trained on existing interfaces, many of which themselves fail accessibility
standards (WebAIM, 2023), the outputs risk reinforcing exclusionary patterns at scale. Against
GenUI critiques highlight how overreliance on opaque AI systems may further obscure
accountability for accessible design, leaving disabled users at risk of systemic marginalization
(Okopnyi et al., 2024).

Previous research in adaptive and model-driven UI frameworks provides partial solutions.
Systems such as SUPPLE (Gajos, Weld, & Wobbrock, 2008), MyUI (Peissner, Häbe, Janssen, &
Sellner, 2012), and the AUIAC framework (Zouhaier, BenDalyHlaoui, & Ben Ayed, 2023)
demonstrate how interfaces can adapt to user profiles, devices, and environmental contexts.
However, these approaches are typically rule-bound, pattern-driven, and limited to adapting
existing designs. They do not engage with the generative potential of modern AI, nor do they
provide designers with mechanisms to declaratively embed accessibility requirements into the
creative process. In short, while adaptive UIs can personalize, they do not generate accessible
design space.

We argue that accessibility must be positioned not as a post hoc validation layer but as a
first-class generative constraint. To advance this vision, this paper introduces A11yUI-DSL, a
conceptual framework for a domain-specific language (DSL) that embeds accessibility heuristics
directly into generative workflows. Unlike natural-language prompting, which is imprecise and
difficult to validate, a DSL offers structured, declarative syntax through which designers can
explicitly state accessibility intentions (e.g., “ensure keyboard navigation,” “provide multimodal

input options,” “maintain minimum 4.5:1 contrast ratio”). These specifications can then be
mapped into generative model prompts, instantiated in accessible design systems, and validated
against heuristic-driven rules.

By elevating accessibility heuristics to the level of language constructs, A11yUI-DSL reframes
how inclusive design can operate in generative contexts. Rather than treating accessibility
guidelines as restrictive checklists, the DSL approach allows them to function as generative
constraints that coexist with creative variation. For example, a simple login screen specification
in A11yUI-DSL could yield multiple compliant yet stylistically distinct variants. Some
optimized for low-vision users, others for motor impairments, and still others for general
audiences. This approach aligns with broader calls in HCI for balancing accessibility compliance
with design creativity (Regan, 2004; Guriţă & Vatavu, 2025).

The contributions of this paper are threefold. First, we conceptualize the A11yUI-DSL syntax
and semantics, grounding them in established accessibility heuristics (including WCAG, ISO
standards, and custom heuristic systems used in professional training). Second, we propose a
pipeline model demonstrating how A11yUI-DSL specifications can be translated into generative
AI prompts, instantiated within accessible design systems, and validated against heuristic rules.
Third, we outline a research agenda that identifies key challenges, including DSL usability for
non-programmers, integration with existing generative tools, and balancing constraint with
creativity, while sketching pathways for future empirical evaluation and tool-building.

In doing so, this paper contributes to both HCI and software language engineering. For HCI, it
extends ongoing debates about the role of AI in accessibility by offering a structured,
language-based approach to inclusive generative design. For software language engineering, it
demonstrates how DSL principles (Kosar, Martínez López, Barrientos, & Mernik, 2008; Karsai
et al., 2009) can be adapted beyond traditional software productivity gains to address
accessibility as a design-critical domain. Most importantly, it establishes a conceptual foundation
upon which future systems can be built and evaluated, moving toward a vision where
accessibility is not merely an evaluative afterthought but a generative condition of design itself.

2. Background & Related Work

2.1 Generative UI Tools

Recent advances in generative AI have produced a new wave of tools capable of creating user
interface mock-ups from high-level prompts. Tools such as UIzard, Galileo AI, and Figma’s First
Draft combine natural language input with model-driven generation pipelines to produce
high-fidelity wireframes and prototypes (Bleichner & Hermansson, 2023; Chen, Knearem, & Li,

2025). These systems have demonstrated clear value for rapid ideation, especially for
non-designers and cross-functional teams.

However, empirical studies reveal limitations. UX practitioners report that GenUI tools are
useful for producing a “good first draft,” but they often fail to meet professional standards in the
“last mile” of refinement (Chen et al., 2025). Furthermore, while these tools can accelerate early
design exploration, they lack robust mechanisms for encoding domain-specific constraints such
as accessibility, resulting in outputs that are often visually polished but exclusionary (Okopnyi et
al., 2024; Bleichner & Hermansson, 2023).

2.2 Accessibility in HCI and Generative AI

Accessibility has long been a cornerstone of HCI, with frameworks such as WCAG 2.1, ISO
9241-171, and national accessibility mandates shaping interface evaluation (Miñón, Moreno,
Martínez, & Abascal, 2014). Yet the intersection of accessibility and generative AI is
underexplored. Recent evaluations of AI-generated interfaces found that while they frequently
achieve baseline WCAG compliance (e.g., color contrast), they tend to replicate homogenized
patterns that restrict creativity and fail to support diverse user needs (Guriţă & Vatavu, 2025).

This tension is not new. Designers have historically perceived accessibility as a limitation on
creativity, equating compliance with restrictive or aesthetically uninspired designs (Regan,
2004). Generative AI risks reinforcing this perception by producing outputs that appear
compliant but offer limited creative variation. Scholars caution that without explicit mechanisms
for embedding accessibility requirements, generative models will continue to mirror biases and
gaps in their training data, which often consists of inaccessible web and app interfaces (Guriţă &
Vatavu, 2025; WebAIM, 2023).

2.3 Adaptive and Model-Driven UI Frameworks

Parallel research in adaptive and model-driven UI frameworks has demonstrated how
accessibility can be systematically embedded into interface generation. Systems such as SUPPLE
(Gajos, Weld, & Wobbrock, 2008), MyUI (Peissner, Häbe, Janssen, & Sellner, 2012), and the
Adaptive User Interface to Accessibility Context (AUIAC) framework (Zouhaier,
BenDalyHlaoui, & Ben Ayed, 2023) use rule-based transformations to personalize UIs for
different user profiles, devices, and environmental contexts. These approaches exemplify the
potential of model-driven engineering for accessibility, enabling automatic adaptation across
sensory, cognitive, and motor impairments.

Yet limitations remain. Adaptive systems are constrained by predefined rule sets and pattern
repositories. While they can adapt existing designs, they rarely create new ones, limiting their
ability to support diverse creative solutions (Peissner et al., 2012). Moreover, studies show that

designers often resist these systems due to their opacity and perceived loss of control over visual
outcomes (Peissner et al., 2012; Zouhaier et al., 2023). In contrast, generative AI promises to
expand design space rather than constrain it, but it lacks the structured accessibility mechanisms
that adaptive frameworks provide.

2.4 Domain-Specific Languages (DSLs) and Usability

Domain-specific languages (DSLs) are specialized notations designed to capture the concepts
and abstractions of a specific domain (Visser, 2008). DSLs have been shown to improve
productivity, reduce boilerplate, and bridge the gap between domain experts and technical
implementation (Kosar, Martínez López, Barrientos, & Mernik, 2008). Crucially, DSLs offer
declarative precision: they allow users to specify what should be achieved, leaving the how to
automated compilers or interpreters.

The success of a DSL depends not only on its expressive power but also on its usability.
Research in software language engineering emphasizes that DSLs should align with users’
cognitive models, support error prevention, and remain simple enough for non-specialists to
adopt (Barišić, Amaral, & Goulão, 2012; Poltronieri, Zorzo, Bernardino, & Campos, 2018).
Usability evaluation frameworks such as Usa-DSL highlight the importance of treating DSLs as
human–computer interaction artifacts in their own right, subject to the same usability testing as
interfaces (Poltronieri et al., 2018).

Despite these advances, the potential of DSLs for accessibility remains largely untapped.
Previous attempts have focused on extending existing user interface description languages
(UIDLs) with accessibility requirements (Miñón et al., 2014), but these remain technical rather
than generative. To date, no DSL has been designed specifically to embed accessibility heuristics
into generative AI design workflows. This gap is what A11yUI-DSL seeks to address.

3. Conceptual Framework: A11yUI-DSL

The central contribution of this paper is the conceptualization of A11yUI-DSL, a domain-specific
language designed to embed accessibility heuristics into generative design workflows. Unlike
natural language prompts, which are often vague, inconsistent, and difficult to validate,
A11yUI-DSL offers a structured, declarative syntax through which designers can specify
accessibility requirements. The framework rests on four interlocking principles: declarative
accessibility, heuristic grounding, generative mapping, and balancing creativity with compliance.

3.1 Design Principles

1.​ Declarative Accessibility​
A11yUI-DSL adopts a declarative paradigm, allowing designers to express what

accessibility properties an interface must satisfy rather than how those properties should
be implemented. For example, a designer can specify that a button must be
keyboard-accessible, without dictating the exact HTML or ARIA markup. This
separation of concerns ensures that accessibility intent is preserved even as generative
systems produce stylistic or layout variations.​

2.​ Heuristic-Grounded Semantics​
Each DSL construct is directly linked to accessibility heuristics and guidelines. The
semantic layer ensures that constraints such as “minimum contrast ratio 4.5:1” or “label
required for all input fields” are encoded as first-class rules. These heuristics may derive
from standards (WCAG, ISO 9241-171) and extended heuristic systems used in
practitioner training, ensuring that the DSL covers both compliance-oriented and
user-centered accessibility considerations.​

3.​ Generative Mapping​
DSL specifications serve as structured input for generative workflows. This mapping has
two forms:​

○​ Prompt-level translation: A11yUI-DSL statements can be converted into
structured generative prompts for text-to-UI models or large language models,
ensuring that accessibility intent shapes generated outputs.​

○​ Component-level instantiation: DSL constructs can be mapped to accessible
components in design systems (e.g., Material, Carbon, Fluent), guaranteeing
baseline accessibility compliance in generated artifacts.​

4.​ Balancing Creativity and Compliance​
 A key principle of A11yUI-DSL is to avoid the “accessibility handcuffs” identified in
recent research (Guriţă & Vatavu, 2025). While constraints are enforced, the DSL allows
multiple stylistic solutions to emerge within accessible boundaries. For example,
specifying “color-blind safe palette” does not dictate a single color scheme but rather
ensures that all generated variants remain distinguishable for users with color vision
deficiencies.

3.2 Syntax and Semantics

A11yUI-DSL adopts a lightweight, human-readable syntax resembling YAML or pseudo-code.
Constructs are organized around screens, components, and constraints.

Example: Login Screen

​
Screen Login

 Component TextField "Username"

 Constraints: labelRequired true, minContrast 4.5, altInput voice

 Component TextField "Password"

 Constraints: labelRequired true, maskInput true

 Component Button "Sign In"

 Constraints: keyboardAccessible true, focusVisible true

Layout: linear, responsive, adaptFontSize true

●​ Screen: Top-level container representing a view.
●​ Component: UI element with semantic role (e.g., text field, button).
●​ Constraints: Accessibility rules applied to the component.
●​ Layout: Defines structural properties with adaptive features (e.g., responsive scaling,

dynamic font size).

Semantics

●​ labelRequired true ensures that all input fields include descriptive labels.
●​ minContrast 4.5 enforces WCAG AA contrast compliance.
●​ altInput voice specifies an alternative input modality (speech recognition).
●​ keyboardAccessible true and focusVisible true ensure operability via keyboard.

Each constraint maps to a formal rule in the heuristic engine, making specifications
machine-checkable and generatively enforceable.

3.3 Pipeline Model

The A11yUI-DSL workflow can be conceptualized as a layered pipeline:

1.​ DSL Input: Designers author specifications in A11yUI-DSL.
2.​ Compiler/Interpreter: Parses the DSL and validates syntax/semantics against the

heuristic library.
3.​ Generative Mapping:

○​ Converts DSL constraints into structured prompts for AI models (e.g., “Generate
a login screen with input fields that include labels, a minimum 4.5:1 contrast ratio,
and support for voice input”).

○​ Instantiates accessible components from a design system library.
4.​ Accessibility Validator: Automatically checks generated outputs against heuristics and

WCAG standards, flagging violations for regeneration or designer review.
5.​ UI Output: Produces compliant design variants that balance accessibility and creativity.​

​

This pipeline positions accessibility as an upstream constraint rather than a downstream
correction.

3.4 Comparison with Natural Language Prompting

Current generative workflows rely heavily on natural language prompting, where designers issue
commands such as “Create a modern login screen with good contrast and easy navigation.”
While intuitive, this approach suffers from ambiguity: models may interpret “good contrast”
differently, and there is no guarantee of validation.

By contrast, A11yUI-DSL replaces ambiguity with structured declarations. Designers specify
minContrast 4.5, which maps unambiguously to WCAG AA compliance. Furthermore,
DSL-based prompts are machine-checkable and reusable, ensuring consistency across projects.

3.5 Summary

A11yUI-DSL thus represents a shift in how accessibility can be embedded into generative
design. By combining declarative syntax, heuristic semantics, and generative mapping, it
provides a language-based framework that treats accessibility not as a checklist but as a
generative design driver.

4. Illustrative Use Cases

To demonstrate the potential of A11yUI-DSL, we present three use cases that highlight how
declarative accessibility constraints can shape generative workflows. Each case contrasts a

typical natural-language prompt with its equivalent in A11yUI-DSL, illustrating how structured
specifications can yield accessible yet creative design outcomes.

4.1 Case 1: Login Screen

Natural Language Prompt

“Design a clean login screen with a modern look and good accessibility.”

Limitations​
Although generative models may interpret this prompt to include high-contrast colors and large
input fields, there is no guarantee that all accessibility requirements will be satisfied. Critical
features such as input labels, keyboard navigation, and multimodal alternatives are often omitted
(Bleichner & Hermansson, 2023).

A11yUI-DSL Specification

Screen Login

 Component TextField "Username"

 Constraints: labelRequired true, minContrast 4.5, altInput voice

 Component TextField "Password"

 Constraints: labelRequired true, maskInput true

 Component Button "Sign In"

 Constraints: keyboardAccessible true, focusVisible true

Layout: linear, responsive, adaptFontSize true

Resulting Output

●​ Multiple variants generated, each stylistically distinct but all including labeled input
fields, contrast-compliant colors, keyboard operability, and voice input as an alternative
modality.

●​ Accessibility is ensured at the specification level, freeing designers to explore aesthetics
without risking exclusion.

4.2 Case 2: Data Dashboard

Natural Language Prompt

“Generate a dashboard with graphs and widgets that are accessible to all users.”

Limitations​
Generative tools often produce visually appealing dashboards but neglect accessibility for users
with low vision or color vision deficiency. Graphs may use red–green palettes, small labels, or
low-contrast legends, violating accessibility guidelines (Guriţă & Vatavu, 2025).

A11yUI-DSL Specification

Screen Dashboard

 Component Chart "Sales Overview"

 Constraints: colorBlindSafe true, scalableText true, legendPosition top

 Component Table "Monthly Data"

 Constraints: headerRowRequired true, keyboardNavigable true

 Component Button "Export Data"

 Constraints: focusVisible true, minContrast 7.0

Layout: grid, responsive, highZoomSupport true

Resulting Output

●​ Variants include line and bar charts rendered with color-blind safe palettes and zoomable
text.

●​ Chart components are rendered with a table representing the same data. (Tables provide a
better accessible experience than charts).

●​ Tabular data is structured with headers and keyboard navigation.
●​ Buttons maintain AAA-level contrast ratios.
●​ Designers can select among stylistic options while knowing all generated dashboards

meet accessibility heuristics.​

4.3 Case 3: Conversational UI

Natural Language Prompt

“Create a chat interface that is easy to use and accessible.”

Limitations​
Outputs typically resemble generic messaging apps with minimal consideration for multimodal
interaction. For users with motor or cognitive impairments, these designs may be unusable
without voice input, adaptive layouts, or simplified structures (Fadhil, 2018).

A11yUI-DSL Specification

Screen Chat

 Component MessageThread

 Constraints: scalableText true, contrastAdaptive true

 Component InputBox

 Constraints: altInput voice, keyboardAccessible true, labelRequired true

 Component Button "Send"

 Constraints: focusVisible true, sizeLarge true

Layout: adaptive, multimodalSupport true

Resulting Output

●​ Multiple chat interfaces generated, each supporting text and speech input, adaptive
layouts for small or large screens, and high-contrast message bubbles.

●​ Users can scale text size dynamically, and input controls remain accessible through both
keyboard and voice.

●​ Designers can evaluate stylistic variants while accessibility is enforced by default.​

4.4 Synthesis of Use Cases

Across these scenarios, a consistent pattern emerges: natural-language prompts are too vague to
guarantee accessibility, whereas A11yUI-DSL specifications produce outputs that are both
compliant and diverse. By shifting accessibility from a downstream evaluation to an upstream
generative constraint, A11yUI-DSL enables inclusivity without stifling creativity.

5. Design Space and Open Challenges

The conceptualization of A11yUI-DSL opens a design space at the intersection of accessibility,
generative design, and domain-specific languages. While promising, this space raises several
open challenges that must be addressed before such a system can be fully realized. We identify
five central tensions.

5.1 Expressivity vs. Simplicity

A recurring challenge in DSL design is balancing the expressivity of the language with its ease
of use (Karsai et al., 2009; Kosar et al., 2008). A highly expressive DSL may allow detailed
specifications of accessibility constraints (e.g., multimodal interaction rules, dynamic adaptation
thresholds), but such complexity risks alienating designers who lack technical training.
Conversely, a simpler DSL may be easier to learn but fail to capture the nuance of accessibility
heuristics. Future work must explore how to scaffold language adoption, perhaps through tiered
syntax levels (basic vs. advanced) or visual abstractions for non-programmers.

5.2 Constraint Rigidity vs. Creative Freedom

One of the primary critiques of AI-generated UIs is that they often achieve accessibility
compliance at the cost of creative diversity, a phenomenon termed “accessibility handcuffs”
(Guriţă & Vatavu, 2025). DSL-driven constraints risk reinforcing this problem if they are too
rigid, producing repetitive or uninspired designs. A key challenge is to support multi-objective
optimization: generating outputs that satisfy accessibility rules while still allowing for stylistic

variation. Approaches such as genetic algorithms for UI generation (Troiano & Birtolo, 2012)
may offer pathways for balancing these objectives.

5.3 Integration with Generative Systems

For A11yUI-DSL to function in practice, its specifications must be effectively translated into
generative workflows. This integration involves two technical hurdles: (1) mapping DSL
constraints to natural language prompts or structured conditioning for generative models, and (2)
instantiating DSL constructs in accessible component libraries (e.g., Material, Carbon, Fluent).
Given that generative systems vary in representation, from pixel-based image models to
code-generating transformers (Chen et al., 2025), a robust translation layer will be required.
Research is needed on interoperability standards that link declarative accessibility rules with
diverse generative architectures.

5.4 Evaluation Metrics and Methods

Accessibility evaluation in generative contexts remains underdeveloped. Current GenUI
evaluations focus on superficial compliance, with limited alignment between AI evaluators,
automated tools, and human testers (Guriţă & Vatavu, 2025; Miñón et al., 2014). A key challenge
is to develop comprehensive evaluation metrics that assess not only compliance but also
usability, adaptability, and creative diversity. Furthermore, A11yUI-DSL itself must be evaluated
as an HCI artifact, using established frameworks for DSL usability testing (Barišić, Amaral, &
Goulão, 2012; Poltronieri et al., 2018).

5.5 Usability of the DSL Itself

Finally, A11yUI-DSL must be usable by a wide range of stakeholders, from accessibility
specialists to UX designers and developers. Prior studies highlight that DSLs often fail when
they are too technical or misaligned with users’ mental models (Visser, 2008; Barišić et al.,
2012). Ensuring usability will require iterative co-design with practitioners, lightweight syntax
that reduces cognitive load, and validation tools that provide immediate feedback on DSL
correctness. Embedding usability evaluation methods into the DSL development process is
therefore critical.

5.6 Summary

Together, these challenges highlight the complexity of embedding accessibility into generative
workflows. Addressing them requires interdisciplinary research that spans HCI, AI, accessibility,
and software language engineering. A11yUI-DSL is thus best understood as a provocation and
roadmap: a conceptual proposal that surfaces the tensions and opportunities at this emerging
intersection, and that invites future empirical and technical work to explore solutions.

6. Implications & Roadmap

The conceptual framework of A11yUI-DSL has implications for both research and practice. By
embedding accessibility heuristics into generative workflows through a structured language,
A11yUI-DSL reframes accessibility not as an afterthought but as a driver of design generation.
This reorientation provides opportunities to expand inclusivity, advance methodological
approaches, and guide the next phase of tool development.

6.1 Implications for Research

For researchers in human–computer interaction, accessibility, and software language
engineering, A11yUI-DSL provides a new conceptual model for studying the interplay between
accessibility constraints and generative design. It offers a formal mechanism to operationalize
accessibility heuristics in design generation, thereby enabling controlled experiments on
trade-offs between compliance, creativity, and usability. Moreover, it extends prior work in
adaptive and model-driven UIs by proposing a generative approach, shifting the focus from
rule-based adaptation to language-driven creation. Research communities can use A11yUI-DSL
as a foundation for exploring multi-objective optimization, heuristic validation pipelines, and
DSL usability evaluation frameworks.

6.2 Implications for Practice

For practitioners, A11yUI-DSL offers a pathway to integrate accessibility into everyday
generative workflows. UX designers and developers could leverage DSL constructs to specify
accessibility requirements with precision, ensuring that generated outputs meet standards while
still offering stylistic diversity. Accessibility specialists could use A11yUI-DSL to formalize
heuristics and enforce organizational compliance policies. Product teams might adopt the
language as a bridge between design intent and implementation, reducing miscommunication
across roles. In each case, the DSL enables accessibility-first design without significantly
increasing workload or technical overhead.

6.3 Roadmap for Future Work

The next phase of work involves moving from conceptualization to implementation and
empirical validation. Four directions are particularly salient:

1.​ Prototype Development: Build a minimal A11yUI-DSL compiler or interpreter that
supports a subset of constructs, mapping them to generative AI prompts and accessible
component libraries.​

2.​ Integration with Design Systems: Connect DSL specifications to existing accessible
design frameworks such as Material, Carbon, or Fluent, enabling seamless generation of
compliant components.​

3.​ Empirical Evaluation: Conduct studies with UX designers and users with disabilities to
compare DSL-driven generative workflows with natural language prompting. Evaluation
criteria should include accessibility compliance, design diversity, usability, and perceived
creative freedom.​

4.​ Iterative Refinement: Use insights from prototype deployment and evaluation to refine
the DSL’s syntax, semantics, and usability. This iterative process can draw on established
methodologies in software language engineering, such as incremental language
development and participatory evaluation.​

6.4 Positioning as an Agenda-Setting Contribution

A11yUI-DSL should be understood as both a framework and a provocation. It demonstrates the
feasibility of embedding accessibility heuristics as generative constraints while highlighting the
challenges that must be addressed to make such systems usable and effective. By providing a
roadmap for future work, this paper invites interdisciplinary collaboration across AI, HCI,
accessibility, and programming languages to realize the vision of inclusive generative design.

7. Conclusion

Generative AI has introduced new possibilities for user interface design, enabling rapid
prototyping and democratized access to design tools. Yet as current research and practice reveal,
these systems often fall short on accessibility, producing interfaces that are formally compliant
but creatively limited or, in many cases, exclusionary. The risk is clear: without explicit
mechanisms for embedding accessibility into generative workflows, AI-driven design may
replicate existing inequities at scale.

This paper has proposed A11yUI-DSL, a conceptual framework for a domain-specific language
that embeds accessibility heuristics directly into generative user interface design. By elevating
accessibility to a first-class generative constraint, A11yUI-DSL reframes accessibility not as a
downstream evaluation but as an upstream driver of inclusive design. Through design principles,
illustrative syntax, pipeline modeling, and use cases, we have outlined how the DSL approach
can offer both compliance and creative flexibility.

The contributions of this work are threefold. First, it articulates a conceptual model for
embedding accessibility heuristics into generative workflows, addressing a critical gap in current

GenUI research. Second, it demonstrates, through concrete use cases, how structured declarative
specifications can outperform vague natural language prompts in producing accessible and
diverse outputs. Third, it identifies a research agenda, highlighting design tensions and open
challenges that must be resolved through interdisciplinary collaboration.

A11yUI-DSL is not presented as a finished system but as an agenda-setting proposal. Its value
lies in defining a research and design space where accessibility, generative AI, and
domain-specific languages converge. Future work will require prototyping, integration with
design systems, and empirical evaluation involving both practitioners and users with disabilities.
In doing so, we can move closer to a vision where generative systems do not merely replicate
accessible patterns but create them by design.

By positioning accessibility as a generative condition rather than a corrective check,
A11yUI-DSL seeks to expand both the inclusivity and creativity of future design practices. The
challenge now is to transform this conceptual framework into actionable tools and methods that
ensure generative AI contributes to, not detracts from, the goal of universal access.

References

Barišić, A., Amaral, V., & Goulão, M. (2012, September). Usability evaluation of
domain-specific languages. In 2012 Eighth International Conference on the Quality of
Information and Communications Technology (QUATIC) (pp. 342–347). IEEE.
https://doi.org/10.1109/QUATIC.2012.63

Bleichner, J., & Hermansson, P. (2023). Generative UI design with diffusion models: Exploring
automated interface creation and human-computer interaction. arXiv preprint
arXiv:2305.XXXX.

Chen, X., Knearem, T., & Li, Z. (2025). The GenUI Study: Exploring the design of generative UI
tools to support UX practitioners and beyond. Proceedings of the ACM on Human-Computer
Interaction, 9(CSCW). https://doi.org/10.1145/XXXXXXX

Fadhil, A. (2018). Domain-specific design patterns: Designing for conversational user
interfaces. In Proceedings of the International Conference on Conversational UX Design. arXiv
preprint arXiv:1802.09055.

Gajos, K. Z., Weld, D. S., & Wobbrock, J. O. (2008). Automatically generating personalized
user interfaces with SUPPLE. Artificial Intelligence, 174(12–13), 910–950.
https://doi.org/10.1016/j.artint.2010.05.002

https://doi.org/10.1109/QUATIC.2012.63
https://doi.org/10.1109/QUATIC.2012.63
https://doi.org/10.1145/XXXXXXX
https://doi.org/10.1016/j.artint.2010.05.002
https://doi.org/10.1016/j.artint.2010.05.002

Guriţă, A., & Vatavu, R.-D. (2025). How well can generative AI design and evaluate user
interfaces? Multimedia Tools and Applications, 84(3), 4451–4478.
https://doi.org/10.1007/s11042-023-14390-5

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., & Völkel, S. (2009). Design
guidelines for domain-specific languages. In Proceedings of the 9th OOPSLA Workshop on
Domain-Specific Modeling (DSM’09). Orlando, FL.

Kosar, T., Martínez López, P. E., Barrientos, P. A., & Mernik, M. (2008). A preliminary study on
various implementation approaches for domain-specific languages. Information and Software
Technology, 50(5), 390–405. https://doi.org/10.1016/j.infsof.2007.04.002

Miñón, R., Moreno, L., Martínez, P., & Abascal, J. (2014). Development of accessible user
interfaces for ambient intelligence systems. Interacting with Computers, 26(5), 406–421.
https://doi.org/10.1093/iwc/iwt050

Okopnyi, P., Turner, F., Brehmer, M., & Westendorf, L. (2024). Against generative UI. In
Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ’24).
ACM.

Peissner, M., Häbe, D., Janssen, D., & Sellner, T. (2012, June). MyUI: Generating accessible
user interfaces from multimodal design patterns. In Proceedings of the 4th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems (pp. 81–90). ACM.
https://doi.org/10.1145/2305484.2305500

Poltronieri, I., Zorzo, A. F., Bernardino, M., & Campos, M. de B. (2018). Usability evaluation
framework for domain-specific language: A focus group study. In Proceedings of the 2018 ACM
Symposium on Applied Computing (pp. 1629–1636). ACM.
https://doi.org/10.1145/3167132.3167348

Regan, B. (2004). Accessibility and creativity: Finding balance in interface design. Journal of
Usability Studies, 2(1), 45–53.

Visser, E. (2008). WebDSL: A case study in domain-specific language engineering. In R.
Lämmel, J. Visser, & J. Saraiva (Eds.), Generative and Transformational Techniques in Software
Engineering II (pp. 291–373). Springer. https://doi.org/10.1007/978-3-540-88643-3_7

WebAIM. (2023). The WebAIM Million: An annual accessibility analysis of the top 1,000,000
home pages. Center for Persons with Disabilities, Utah State University.
https://webaim.org/projects/million/

https://doi.org/10.1007/s11042-023-14390-5
https://doi.org/10.1007/s11042-023-14390-5
https://doi.org/10.1016/j.infsof.2007.04.002
https://doi.org/10.1093/iwc/iwt050
https://doi.org/10.1093/iwc/iwt050
https://doi.org/10.1145/2305484.2305500
https://doi.org/10.1145/2305484.2305500
https://doi.org/10.1145/3167132.3167348
https://doi.org/10.1145/3167132.3167348
https://doi.org/10.1007/978-3-540-88643-3_7
https://webaim.org/projects/million/
https://webaim.org/projects/million/

Zouhaier, K., BenDalyHlaoui, Y., & Ben Ayed, L. (2023). Adaptive user interfaces to
accessibility context: A framework for user-centered accessibility. Universal Access in the
Information Society, 22(2), 201–218. https://doi.org/10.1007/s10209-022-00884-7

https://doi.org/10.1007/s10209-022-00884-7

	A11yUI-DSL: A Conceptual Framework for ​Generative Accessible User Interfaces
	Abstract
	Introduction
	2. Background & Related Work
	2.1 Generative UI Tools
	2.2 Accessibility in HCI and Generative AI
	2.3 Adaptive and Model-Driven UI Frameworks
	2.4 Domain-Specific Languages (DSLs) and Usability

	3. Conceptual Framework: A11yUI-DSL
	3.1 Design Principles
	3.2 Syntax and Semantics
	Example: Login Screen
	Semantics

	3.3 Pipeline Model
	3.4 Comparison with Natural Language Prompting
	3.5 Summary

	4. Illustrative Use Cases
	4.1 Case 1: Login Screen
	4.2 Case 2: Data Dashboard
	4.3 Case 3: Conversational UI
	4.4 Synthesis of Use Cases

	5. Design Space and Open Challenges
	5.1 Expressivity vs. Simplicity
	5.2 Constraint Rigidity vs. Creative Freedom
	5.3 Integration with Generative Systems
	5.4 Evaluation Metrics and Methods
	5.5 Usability of the DSL Itself
	5.6 Summary

	6. Implications & Roadmap
	6.1 Implications for Research
	6.2 Implications for Practice
	6.3 Roadmap for Future Work
	6.4 Positioning as an Agenda-Setting Contribution

	7. Conclusion
	References

